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ABSTRACT: Numerical weather prediction centers rely on the Gridded Binary Second Edition (GRIB2) file format to
efficiently compress and disseminate model output as two-dimensional grids. User processing time and storage require-
ments are high if many GRIB2 files with sizeO(100 MB, where B = bytes) need to be accessed routinely. We illustrate one
approach to overcome such bottlenecks by reformatting GRIB2 model output from the High-Resolution Rapid Refresh
(HRRR) model of the National Centers for Environmental Prediction to a cloud-optimized storage type, Zarr. Archives of
the original HRRR GRIB2 files and the resulting Zarr stores on Amazon Web Services (AWS) Simple Storage Service
(S3) are available publicly through the Amazon Sustainability Data Initiative. Every hour, the HRRR model produces
18- or 48-hourly GRIB2 surface forecast files of size O(100 MB). To simplify access to the grids in the surface files, we re-
organize the HRRR model output for each variable and vertical level into Zarr stores of size O(1 MB), with chunks
O(10 kB) containing all forecast lead times for 150 3 150 gridpoint subdomains. Open-source libraries provide efficient
access to the compressed Zarr stores using cloud or local computing resources. The HRRR-Zarr approach is illustrated for
common applications of sensible weather parameters, including real-time alerts for high-impact situations and retrospective
access to output from hundreds to thousands of model runs. For example, time series of surface pressure forecast grids can
be accessed using AWS cloud computing resources approximately 40 times as fast from the HRRR-Zarr store as from the
HRRR-GRIB2 archive.

SIGNIFICANCE STATEMENT: The rapid evolution of computing power and data storage have enabled numerical
weather prediction forecasts to be generated faster and with more detail than ever before. The increased temporal and
spatial resolution of forecast model output can force end users with finite memory and storage capabilities to make
pragmatic decisions about which data to retrieve, archive, and process for their applications. We illustrate an approach
to alleviate this access bottleneck for common weather analysis and forecasting applications by using the Amazon Web
Services (AWS) Simple Storage Service (S3) to store output from the High-Resolution Rapid Refresh (HRRR) model
in Zarr format. Zarr is a relatively new data storage format that is flexible, compressible, and designed to be accessed
with open-source software either using cloud or local computing resources. The HRRR-Zarr dataset is publicly avail-
able as part of the AWS Sustainability Data Initiative.
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1. Introduction

The global weather enterprise relies on millions of large,
two-dimensional data fields (grids) created each day by opera-
tional numerical weather prediction (NWP) models (Benjamin
et al. 2018). The perceptions, uses, and values for that vast
amount of information depend in part on its accessibility and
how it is disseminated to end users (Lazo et al. 2009). Advan-
ces in computing processing power and storage have allowed
operational centers to run models at finer spatial scales and
higher temporal frequency, yet only a small fraction of the
information available from the models is typically available to
end users (Benjamin et al. 2018). Pragmatic decisions are
made by operational forecast centers in order to disseminate
global and regional model output for dozens of parameters by

restricting ranges and frequencies of valid times and horizontal
and vertical grid spacings. Those decisions have been heavily
influenced by internal and external limitations on storing and
accessing the hundreds of gigabytes (GB) of model output
generated by each model run. These challenges are not unique
to the weather sector; many disciplines are struggling to over-
come the “volume, variety, and velocity” of data cubes (data-
sets in space and time) available from Earth observation
systems (Giuliani et al. 2020; Yao et al. 2020). Improved data
cube cyber infrastructures are recognized to be needed for
environmental datasets to allow the ingestion, storage, access,
analysis, and use of data elements ordered by geolocation and
other shared attributes (Nativi et al. 2017).

The National Oceanic and Atmospheric Administration
(NOAA) Big Data Program (BDP) began in 2015 to address
agency-wide issues to access the tens of terabytes (TB) of
observations and model output created each day within the
agency (Ansari et al. 2018; NOAA 2020). With support from
the NOAA BDP, the NOAA Cooperative Institute for
Climate and Satellite–North Carolina (CICS-NC) has imple-
mented a data hub architecture to facilitate transfer of key
NOAA environmental datasets to infrastructure-as-a-service
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(IaaS) providers for data storage. This includes over 130 data
streams, including such high-demand datasets as current
and historical Next Generation Weather Radar (NEXRAD)
products from 160 sites in the United States (Ansari et al.
2018). IaaS providers [e.g., Amazon Web Services (AWS);
Google Cloud Platform; IBM; and Microsoft Azure] have the
capacity to store enormous datasets and provide public access
and computing resources for end users to postprocess these
data streams within their IaaS environment to reduce the time
and cost to access the information using cloud (offsite on the
Internet) or local compute resources (Molthan et al. 2015; Siuta
et al. 2016). The commitment by NOAA and IaaS providers to
facilitate public access to these datasets addresses many of the
FAIR principles for data repositories: findability, accessibility,
interoperability, and reusability (Wilkinson et al. 2016).

The Google Cloud Platform and AWS Simple Storage
Service (S3) began providing public access during 2020 to out-
put from the High-Resolution Rapid Refresh (HRRR) model
of the National Centers for Environmental Prediction
(NCEP). The HRRR is a convection-allowing model that was
developed by the Earth Systems Research Laboratory and is
run operationally every hour by the NCEP’s Environmental
Modeling Center. HRRR output is available for dozens of
surface and upper-atmospheric variables at 3-km grid spacing
for a 1.9 million gridpoint domain that covers the contiguous
United States (CONUS; Benjamin et al. 2016; Blaylock et al.
2017a). As of December 2021, the HRRR archives provided
by Google and AWS are larger than 2 petabytes (PB) in total
storage and are growing at a rate of over 700 GB per day.

From 2016 to 2020, more than 1000 registered operational
and research users relied on the only publicly accessible
archive of HRRR model output that was managed by
researchers at the University of Utah. This archive utilized
S3-type storage procedures provided by the Center for High
Performance Computing (Blaylock et al. 2017b, 2018). By
2020, the archive grew to over 160 TB and continuing to main-
tain and expand the HRRR archive at the University of
Utah was no longer feasible. We began exploring alternative
approaches and formats to store HRRR model output for
diverse applications that rely on the GRIB2 model output
available now from the IaaS providers.

International standards were established by the World
Meteorological Organization (WMO) to efficiently store and
disseminate NWP model output in hypercube-structured file
formats with built-in compression algorithms. The Gridded
Binary Second Edition (GRIB2) format has been in use dur-
ing the past several decades to archive two-dimensional files
that are efficiently compressed using a method similar to
JPEG image compression (Silver and Zender 2017). While
GRIB2 files effectively help to store and transmit large
amounts of meteorological data as two-dimensional slices,
they can be cumbersome to work with and rely on WMO-
defined tables that are unfamiliar to users in other disciplines
(Wang 2014). Many users rely on software tools to transform
GRIB2 files into other self-describing formats such as
netCDF-4 (Silver and Zender 2017). Decoding the two-
dimensional slices in GRIB2 format requires high memory use
that contributes to inefficiencies when, for example, an end

user may only be interested in certain parameters for all fore-
cast times available from a specific model run within a local or
regional subdomain. It is possible to access individual variables
within GRIB2 files by selecting their byte range or specifying
a bounding box for domain subsets, but doing so requires first
loading each file into memory and performing additional post-
processing to build a file index. Once such an index is created,
individual variables over their whole domain can be selected
from GRIB2 files in object storage and accessing subdomains
is possible for files stored locally (Blaylock et al. 2017b, 2018).

Researchers generally use high-level programming environ-
ments that rely on MATLAB, Interactive Data Language
(IDL), or Python to examine, postprocess, and visualize oper-
ational model data. Data science and machine learning (ML)
techniques applied to operational model output typically
require multivariate training datasets with long periods of
record for which alternative data structures beyond GRIB2
are necessary (Vannitsem et al. 2021). As summarized by
McGovern et al. (2017), these big data and ML methods have
been used to improve forecasts of weather and pollution
parameters such as storm duration (Cintineo et al. 2014),
severe wind (Lagerquist 2016), large hail (Adams-Selin and
Ziegler 2016), precipitation type (Reeves et al. 2014; Elmore
et al. 2015), aviation turbulence (Sharman 2016), orographic
precipitation (Arulraj and Barros 2021), and ozone concentra-
tions (Wang et al. 2022). To continue applying ML and artificial
intelligence techniques to the ever-growing model output repos-
itories, it will be critical to have data in structures that allow for
flexible dissection in space, time, and across many forecast
model runs or ensemble members (McGovern et al. 2017).

An alternative storage format, Zarr, is described in this study
as a means to archive HRRR output. Zarr is a relatively new
storage format, developed in 2016 for use in a malaria genome
project. It chunks and compresses N-dimensional datasets for
flexible storage in memory, on disk, or within cloud platforms
(Vance et al. 2019; Miles et al. 2020; Abernathey et al. 2021). The
Zarr format is being used for promising ML and big data applica-
tions in other disciplines, for example, the Lyft level-5 self-driving
dataset (Houston et al. 2020), the MalariaGEN project (Pearson
et al. 2019), and the Pangeo project (Eynards-Bontemps et al.
2019; Signell and Pothina 2019; Abernathey et al. 2021).

In the weather enterprise, the Met Office has adopted Zarr
as its file storage format of choice for the over 200 TB of data
produced by high-resolution NWP models each day (McCaie
2019). Additionally, Unidata developers of netCDF have
extended its netcdf-c library to access Zarr data in a storage
format referred to as NCZarr (Heimbigner 2021). The Open
Geospatial Consortium has recognized Zarr as a storage for-
mat of high interest but has not yet approved the proposal to
specify Zarr, version 2, as an official community standard
(https://www.ogc.org/search/content/zarr).

The HRRR model output in Zarr format developed in this
study (hereinafter HRRR-Zarr) is one approach to extract
and disseminate model output intended for common ML
workflows that may require specific variables from one to
thousands of model runs at specific locations. HRRR-Zarr
makes it practical to access relatively small fractions of data
rather than attempting to retrieve that data from the original
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GRIB2 formatted files. The capability to do so is possible
since HRRR-Zarr formatted objects are being created by our
group, stored in the AWS S3 environment, and made publicly
accessible as part of the AWS Sustainability Data Initiative,
complementing the HRRR GRIB2 model archive available
there (Amazon 2021). While the HRRR-Zarr archive is opti-
mized for use via AWS Cloud services, it is important to note
that it can be accessed from any machine.

The remainder of this paper will be organized in the follow-
ing manner. We first detail the HRRR model specifications,
Zarr capabilities and limitations, AWS HRRR-Zarr archive
structure, and comparisons of the time required to access
GRIB2 files versus Zarr formatted objects. Next, we explore
potential use cases for the HRRR-Zarr dataset, for both
research and operational applications. We will detail the ben-
efits of the HRRR-Zarr format in a general sense, as well as
demonstrate its utility in analyzing a high-impact meteorologi-
cal event from September 2020 that included record-breaking
downslope windstorms in two states, devastating wildfire
spread, and an early season snowstorm. The final section pre-
sents a summary and future work.

2. Data and methods

a. The High-Resolution Rapid Refresh model

The HRRR is a 3-km, convection-allowing model that is
run operationally by NCEP’s Environmental Modeling
Center (Benjamin et al. 2016). It was developed by the Earth
Systems Research Laboratory and was first run operationally
in September 2014. The latest version of the HRRR model
(version 4, deployed 2 December 2020), is initialized each
hour, with hourly forecasts out to either 18 or 48 h depending
on the initialization time (Table 1). The operational HRRR
domain covers the entire CONUS (Fig. 1), with a separate
domain for Alaska (McCorkle et al. 2018).

NOAA BDP and CICS-NC staff manage the distribution
of HRRR model output to IaaS providers Google and AWS.
Public cloud platforms, such as Google and AWS, provide
object stores rather than file systems to access massive
amounts of data. Hence, we rely on the archive and real-time
HRRR GRIB2 data available publicly as part of the AWS
Sustainability Data Initiative (https://registry.opendata.aws/
noaa-hrrr-pds/). The HRRR GRIB2 archive is publicly acces-
sible via the AWS S3 using the unique identifier “noaa-hrrr-
bdp-pds.” We refer to GRIB2 objects as files since they are
not a cloud-native format and generally need to be down-
loaded to a file system to be accessed.

HRRR output accessible from IaaS providers contains
eight dimensions, listed below (dimensions contained in each
GRIB2 file are listed in boldface text, with the remaining
dimensions encoded in the naming conventions of separate
files):

• File type: Surface, subhourly, isobaric, native
• Domain: CONUS, Alaska
• Initialization time: Hourly from 2014 to the present
• Forecast lead time: 15- or 60-min intervals out to 48 h
• Level: Pressure, height, layer
• Variable: Sensible weather parameters and many model-
specific fields

• X position
• Y position

Table 1 summarizes the evolution of the HRRR model
from its initial operational release in 2014 to the present. We
only postprocess into Zarr format a limited amount of the
output from the HRRR (Table 2). We have focused on refor-
matting the GRIB2 surface files as many ML use cases
require surface sensible weather parameters or meteorologi-
cal parameters at “standard” levels in the vertical that are
stored in those GRIB2 files. At present, the volume of
HRRR output in Zarr format accessible from AWS exceeds
145 TB and is growing at a rate of 120 GB per day.

We focus our description of HRRR-Zarr objects on the
processing of the CONUS surface GRIB2 files, each of size
∼140 MB, that contain 173 grids representing a mix of varia-
bles at levels in the vertical of highest interest for many appli-
cations (Table 1). Output from HRRR model runs initialized
at 0000, 0600, 1200, and 1800 UTC are available hourly from

TABLE 1. Selected characteristics of HRRR CONUS versions from 2014 to present available from IaaS cloud providers.

HRRR CONUS Forecast length for initialization times No. of GRIB2 output files

Version First date 0000, 0600, 1200, and 1800 UTC Other hours Surface Pressure Native Subhourly

1 30 Sep 2014 15 15 102 659 778 26
2 23 Aug 2016 18 18 135 687 1110 41
3 12 Jul 2018 36 18 151 701 1126 44
4 2 Dec 2020 48 18 173 711 1136 196

FIG. 1. HRRR domain (1799 3 1059 grid points) divided into
96 chunks of size 150 3 150 grid points, with the northernmost
12 chunks containing nine rows of “non-NaN” (null) data.
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the analysis time (F00) and hourly forecast lead times out to
48 h (F48). The HRRR model runs initialized at other hours
of the days are available from F00 to F18.

The subhourly files are similar to the surface files and con-
tain variables with output available at 15-min forecast lead
times. The isobaric and native files contain meteorological
variables at fixed pressure or terrain-following levels, respec-
tively, that are most relevant for users who need the HRRR
output for initial and boundary conditions to initialize high-
resolution forecasts or research simulations (e.g., Crosman
and Horel 2017; Foster et al. 2017).

b. Zarr

Zarr is a flexible storage format for storing N-dimensional
data arrays that are chunked (divided into subdomains) and
compressed with metadata necessary for locating and inter-
preting data described in separate JSON-formatted files,
where JSON is JavaScript Object Notation. The Zarr format
provides similar functionality with some additional flexibility
relative to the Hierarchical Data Format, version 5 (HDF5;
Delaunay et al. 2019). Zarr stores are read and written with
the Zarr Python library that depends on the widely used
NumPy library (Harris et al. 2020). The Zarr format is becom-
ing a desirable cloud-native file structure for data scientists
and researchers because of its seamless ability to read and
write to cloud platforms (Abernathey et al. 2021). Other ben-
efits include its library of compression options, multithreading
and multiprocessing capabilities, and its backend compatibil-
ity with format-agnostic, array-manipulation Python libraries
(e.g., xarray, iris, and dask).

A Zarr store is initialized using Python and can be in mem-
ory, a directory on local disk, in distributed or cloud storage,
or a zip file. Next, Zarr arrays (hereinafter zarrays) are cre-
ated and filled in a similar manner to NumPy arrays by defin-
ing a data type and shape and then assigning values and
defining zarray attributes (zattrs), stored in JSON files, that
will serve as the key references for that zarray. These zarrays
can be chunked along any specified dimension and in any
shape, which allows a dataset to be manipulated and stored
efficiently for use in specific applications. All chunks in a zar-
ray are uniform in shape and stored as individual objects that
are identified by their integer index (e.g., row and column)
relative to other chunks.

The HRRR-Zarr archive with the unique AWS S3 bucket
identifier “hrrrzarr” is available publicly as part of the AWS
Sustainability Data Initiative and can be accessed from any
platform (cloud, HPC, or personal machine) without incurring

egress fees. The archive was designed to be relevant for users
less familiar with environmental dataset formats and wanting
“analysis-ready datasets” (Abernathey et al. 2021) while sup-
porting a familiar environment for users who have used model
output in netCDF-4 or GRIB2 format. The HRRR-Zarr con-
version workflow follows that of the Met Office Informatics
Laboratory, where they are actively using Zarr to store large
datasets (Donkers 2020). Because of the challenges that sur-
round manipulating data cubes in various file formats, the
Met Office developed the Iris Python library, a format-agnos-
tic library for processing datasets and converting between file
formats (Met Office 2020). Unlike other Python libraries, Iris
and its companion package, Iris-grib, were built to read data
cube formats such as GRIB2 and recognize the Climate and
Forecast (CF; Eaton et al. 2020) metadata conventions used
in numerical model data. For this reason, the Iris libraries
facilitate data conversion that maintains metadata such as
units from the original GRIB2 files.

The HRRR-Zarr archive was built using the Iris and
Iris-grib libraries. HRRR-Zarr data stores rely on the same
self-describing metadata (keywords and CF naming scheme)
as the corresponding GRIB2 files obtained from their associ-
ated index (.idx) files. As an example, consider the workflow
required to process the 48 GRIB2 surface forecast files con-
taining 173 grids from the HRRR model runs initialized at
0000 UTC. [The CF names for all 173 HRRR variables are
available online (https://mesowest.utah.edu/html/hrrr/zarr_
documentation/html/zarr_variables.html).] All of the grids
from the 48 hourly forecast files are read into memory
together and then organized into unique Iris data cubes con-
taining data and metadata. The Iris data cubes are then con-
verted to zarrays that are subdivided (chunked), encoded, and
output into separate files identified by the parameter’s CF
name and atmospheric level or layer (e.g., 2-m or 500 mb).

As shown in Fig. 1, the 1799 3 1059 grid is subdivided into
96 chunks of size 150 3 150, chosen after rigorous trial and
error with various sizes and considering recommendations for
optimal data compression. Note that the 12 chunks along the
domain’s northern boundary contain data in only the south-
ernmost nine rows. HRRR CONUS analysis (F00) files,
whether for surface or isobaric files, are simply subdivided
into 96 tiny 2D files each containing one 150 3 150 gridpoint
array. HRRR CONUS forecast (F01–FXX) files are stored as
96 3D cubes (XX, 150, 150) where the forecast duration,
FXX, depends on HRRR version and time of day (Table 1).
Although the data are chunked, the entire domain can still be
accessed efficiently, in terms of memory and processing time,
with the zarr or xarray Python libraries.

Before sending the chunked zarrays to the Zarr store, they
are encoded and compressed for optimized storage. The
encoding instructions are located in the JSON metadata for
the zarray and define the data type’s byte order (little endian
or big endian), character code (integer, floating point,
Boolean, etc.), and the number of bytes. All data types in the
NumPy array protocol are acceptable for zarray encoding.
There exists a plethora of literature that details compression
algorithm performance and benchmark test results that aid in
choosing appropriate compression schemes for a particular

TABLE 2. Availability as of December 2021 of Zarr analysis and
forecast files in AWS S3 for surface and isobaric file types.

HRRR CONUS File type

Version First date Analyses Forecasts

2 23 Aug 2016 Surface }

3 12 Jul 2018 Surface and isobaric Surface
4 2 Dec 2020 Surface and isobaric Surface
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use case (Donoho 1993; Alted 2010; Almeida et al. 2014;
Wang et al. 2015; Kuhn et al. 2016).

After testing, we chose the LZ4 compression codec, which
is a lossless compression algorithm with the ability to quickly
and efficiently compress large amounts of data (Collett 2020).
The zarrays are usually encoded as 16-bit little-endian floats,
although a few variables, such as surface pressure, require
32-bit little-endian floats. As part of the LZ4 compression,
we use byte shuffling and a compression level of 9 within a
range of 1–12 where levels 1 and 12 provide the fastest com-
pression speed and highest compression ratio, respectively.
While other compression “codecs” have been shown to pro-
duce higher data compression ratios, their decompression
speeds are much slower (Collett 2020).

It is widely recognized that optimal use of cloud resources
requires extensive data processing to be physically close to
the data archive. Shortly after the entire model run is accessi-
ble as objects in the AWS GRIB2 S3 archive, the HRRR-
Zarr stores are created using AWS Elastic Cloud Compute
resources in the same region (us-west-1) as our hrrrzarr
bucket. Since the HRRR-Zarr project began with GRIB2 files
sourced from our University of Utah Pando archive, this is
not the same region as the AWS GRIB2 archive (us-east-1).
Because we must wait until all GRIB2 forecast fields are
available, the most recent Zarr stores are typically available
3 h after the initialization time, e.g., 0000 UTC analysis and
F01–F48 forecast files are available by 0300 UTC. HRRR-
Zarr creation is dependent on the availability of the GRIB2
data in the AWS archive managed by NOAA BDP.

Within the hrrrzarr S3 bucket, all objects are contained in a
flat structure where the concept of folder or directory struc-
ture is mimicked using shared name prefixes for objects with
slashes to indicate a hierarchy. The zarr stores derived from
the surface and isobaric sets of HRRR GRIB2 files are stored
with the prefixes “sfc/” and “prs/,” respectively (Fig. 2).
Model runs are accessible by date, using suffixes for analysis
(anl.zarr) and forecast (fcst.zarr) files for each model run; for
example, files with the prefix sfc/20200907_12z_fcst.zarr/were
generated from the F01–F48 HRRR GRIB2 surface files ini-
tialized at 1200 UTC 7 September 2020. Prefixes follow then
based on level (e.g., 700 mb/or 10m_above_ground/) and CF

naming conventions for variables a (e.g., TMP/or UGRD/) with
the final part of the file name being the chunk identifier. A full
list of variables (abbreviation and full name) available in the
HRRR v4 output and HRRR-Zarr stores is available online
(https://mesowest.utah.edu/html/hrrr/zarr_documentation/html/
zarr_variables. html).

c. Accessing HRRR-Zarr objects

Answering many grand challenges that face the scientific
community requires analyzing the entirety of massive datasets
(Abernathey et al. 2021). Traditional analysis approaches that
involve downloading individual files from data repositories
become impractical for such needs. The Pangeo Project (https://
pangeo.io) is an example of a geoscience-community architecture
for analyzing large volumes of Earth system data (Abernathey
et al. 2021). Similar to our generation of the HRRR-Zarr
objects, that approach focuses on “data-proximate” cloud com-
puting where users analyze the requisite data using cloud-based
compute nodes.

Cloud-native repositories, such as HRRR-Zarr, are inherently
intended to take advantage of parallelized computing using read-
ily available Python libraries and tools such as dask. Abernathey
et al. (2021) benchmarked throughput speeds for netCDF-4 ver-
sus Zarr objects as a function of the number of parallel reads.
The read throughput for Zarr objects was ∼10 times as fast as for
the netCDF-4 objects with less indication of saturation as the
number of parallel operations increased.

Blaylock et al. (2018) presented an approach to compute in
parallel climatological statistics of HRRR model output at all
1.9 million grid points that required harnessing the Open
Science Grid (OSG). The OSG allows users to send jobs that
are repetitive in nature (statistical calculations using large
datasets, data mining, etc.) to unused or idle computing
resources at hundreds of locations within the OSG consor-
tium, reducing the overall processing time for a given
workflow. Although the OSG method enables large
amounts of data to be simultaneously processed, its com-
plexities can be a drawback for most users. Continually
updating cumulative distributions using this approach is
also difficult to sustain.

FIG. 2. Files within the AWS S3 bucket hrrrzarr are named to emulate a hierarchical data structure.
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To help illustrate how the Zarr format and data-proximate
computing can improve upon the OSG approach to compute
basic statistical metrics from large amounts of model output,
we first computed on a home laptop the 95th-percentile wind
speed for a single Zarr subdomain from all HRRR hourly
analyses during September 2017–19 (a 2160-member sample).
While that operation required 143 s to download the requisite
Zarr objects, only 2 s were required to process the data to
obtain the 95th-percentile wind speed for this subdomain.
Hence, the computation is highly IO bound, and a single
machine would require 13 920 s (∼4 h) to process all 96 subdo-
mains. (Without Zarr, the 265 GB of GRIB2 files to down-
load would make this calculation infeasible on a laptop.)

Since parallelizing IO-bound computations on a single
high-performance node is ineffective, a Dask cluster using
AWS Fargate was created using 48 worker nodes in addition
to the scheduler. Each Fargate node runs as a Docker con-
tainer in the requested region, which allows for data-
proximate computing. One script is used to set up the Dask
cluster, configure AWS permissions, build and host the
Docker image with the required libraries, and complete the
analysis. Provisioning the cluster required 150 s, and process-
ing all 96 chunks in parallel took 345 s, for a total time of
495 s. Hence, parallelizing this computation using cloud com-
puting resources would lead to an ∼283 speedup without
requiring excessive memory or local disk storage.

However, many users may need to access data from a spe-
cific environment or not have the financial resources to use
cloud computing. Efficient access from their local computing
environment to targeted data within cloud-based object stores
is an alternative. We illustrate in Table 3 examples of the rela-
tive times to access HRRR output in GRIB2 and Zarr for-
mats using data-proximate AWS nodes, high-performance
servers managed by the Center for High Performance Com-
puting (CHPC) at the University of Utah, or a typical laptop
run over a home network. Xarray’s “lazy loading” approach
for multidimensional datasets improves access efficiency over-
all since the data are not requested until explicitly required
for computations (Hoyer and Hamman 2017).

The most direct comparisons are in the leftmost column of
Table 3. These are the times required using AWS data-
proximate nodes to 1) download 49 separate GRIB2 forecast
files (F00–F48) requiring 7.25 GB of local storage and access
the CONUS-scale grids of surface pressure within those files
using xarray and 2) open and access the 96 Zarr chunks from

both analysis and forecast arrays totaling 356 MB. Hence, for
this specific application, the data would be available for xarray
operations over 40 times faster using Zarr. In fact, even read-
ing from the 49 already-downloaded GRIB2 files is several
times slower than accessing the same data from the 2 corre-
sponding Zarr stores on S3. The times in the non-AWS col-
umns are potentially affected by many external factors, e.g.,
load sharing of the CHPC high-performance compute node as
a function of time of day, network architecture and distance
from the different AWS data centers. However, after running
these comparisons multiple times, the variations likely result-
ing from such factors were much smaller than the differences
evident in Table 3 arising from access to GRIB2 files versus
Zarr objects. For example, the CHPC high-performance com-
puting nodes have relatively fast download speeds for either
GRIB2 or Zarr due to high-speed connectivity to IaaS pro-
viders. While downloading the GRIB2 files to a local personal
computer may not be practical, the direct access to AWS
HRRR-Zarr objects from a laptop is comparable to that from
a CHPC node.

3. HRRR-Zarr applications

The HRRR-Zarr archive was developed with the intention
of expanding its utility for diverse applications that require
high-velocity file throughput. While demonstrating a full ML
scenario is outside the scope of our research, this section illus-
trates examples of situations where the Zarr storage format
may be optimal in terms of efficiency and ease of use. We will
use a high-impact meteorological event from September 2020
to showcase the utility of model data in Zarr format for not
only research applications, but operational decision making
and forecasting use cases as well. This section of the paper
will be composed of subsections that detail the event that we
are analyzing, followed by example use cases for HRRR
model output in Zarr format.

a. Labor Day weather event (7–9 September 2020)

In the days leading up to the historic 2020 Labor Day
weather event, forecasters in the western half of the United
States were on high alert for the extratropical transition of
Typhoon Julian as it began recurving poleward and eastward.
When extratropical transitions occur, tropical cyclones may
interact with the midlatitude flow such that the midlatitude
ridge-wave patterns amplify, and high-impact weather occurs
downstream (Bosart and Carr 1978; Cordeira et al. 2013;
Feser et al. 2015; Keller et al. 2019). In this case, Typhoon
Julian did modify the midlatitude wave pattern by amplifying
both the anticyclone over the Gulf of Alaska and the midlati-
tude cyclone situated over western Canada. The rapid intensi-
fication of this ridge-trough pair ultimately produced far-
reaching effects including historic windstorms and unrelenting
wildfire spread (Fig. 3) in the Pacific Northwest, strong down-
slope winds in Utah, and a snowstorm in Colorado. We focus
here on the data and model forecasts pertaining to the events
that occurred in Oregon, west of the Cascade Mountains.

The Labor Day weather event was synoptically driven and
well forecast several days in advance. Prior to the trough

TABLE 3. Time (s) required to access CONUS-wide GRIB2
files and Zarr objects of surface pressure for F00–F48 hourly
forecasts initialized at 0000 UTC 24 Nov 2021.

Operation AWS cloud CHPC Personal computer

GRIB2 Download files 53 69 563
xarray load 35 62 48
Total 88 131 611

Zarr Open dataset 0.6 1 1
xarray access 1.6 7 5
Total 2 9 6
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arrival and onset of the downslope windstorm, the Pacific
Northwest was experiencing extreme fire danger caused by
warm and dry conditions, with several fires already burning in
Washington and Oregon. By 1200 UTC 7 September, a ther-
mal trough was situated over coastal Oregon with a tightening
pressure gradient orthogonal to it. These conditions are indica-
tive of impending strong northeast and easterly winds in west-
ern Oregon. As forecast, strong easterly winds arrived on the
western side of theOregon Cascades by 0000UTC 8 September.
In a near worst case scenario, wind gusts along the western
slopes of the Oregon Cascades significantly intensified and
spread the human-caused Riverside and Beechie Creek fires.
For nearly a week after the onset of the downslope winds, per-
sistent easterly flow propagated wildfire smoke west, resulting
in historic PM2.5 measurements in excess of 500 mg m23 in
Portland, Salem, and Eugene, Oregon (Green 2020). Suppres-
sion efforts were challenging given the steep terrain surround-
ing the wildfires, making it dangerous for fire crews to safely
extinguish them. Ultimately, the Riverside and Beechie Creek
fires burned over 1300 km2. The following sections use the data
during this weather event to illustrate use cases for future ML
applications for operational forecasting and research.

b. Forecast time series for a specific location

Despite their inherent simplicity, requiring only time and a
dependent variable as input, time series can be time consuming
and challenging to create when starting from data files that rep-
resent a single time in space for millions of locations, as is the

case with NWP model output in GRIB2 format. Efficient access
to model output as time series for specific locations was a key
objective leading to the structure and organization of our
HRRR-Zarr format. While identical time series can be con-
structed from both GRIB2 and Zarr data storage formats, the
process and requirements are quite different. As discussed in
section 2, the tiny two-dimensional analysis HRRR-Zarr stores
can be easily accessed to estimate prior conditions at a location
while the three-dimensional forecast HRRR-Zarr stores con-
tain all forecast hours from a model run to assess how future
conditions at that location may unfold.

To illustrate the utility of the Zarr format for this use case,
we plot time series of forecast wind gusts from the 0000, 0600,
1200, and 1800 UTC HRRR model runs for a single point
from 1200 UTC 6–1800 UTC 8 September 2020 (Fig. 3).
For this case, we chose the HRRR grid point nearest to the
Horse Creek (Station identifier: HSFO3) Remote Automated
Weather Station (44.940 8068N, 122.4008068W) located down-
wind of the Beechie Creek fire. However, since HSFO3 is
located in a clearing within a densely forested region, the
wind reports from this location tended to be lower than what
was evident by the rapid advance of the fire line in that
region. To create this visualization of forecast wind gust,
10 small chunks of data (one from each model run) totaling
∼10 MB were retrieved from the hrrrzarr bucket to obtain all
necessary model output. In contrast, 360 GRIB2 files totaling
∼54 GB would have been needed to replicate this process or
else values within byte ranges in each of those files would

FIG. 3. Boundaries of active fires (red outlines) estimated using VIIRS 375-m thermal anomalies, and smoke from
wildfires in the Pacific Northwest on 9 Sep 2020 (source: https://worldview.earthdata.nasa.gov).
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need to be determined and accessed. The single access point
to all forecast hours in a model run reduces processing time
and optimizes workflows for many applications.

Plotting sequentially the model runs available every hour
creates a time-lagged ensemble (TLE) for a given valid time.
A TLE from HRRR output can provide useful diagnostics for
evaluating the uncertainty or spread in values among recent
forecasts for which the most recent forecast provides only
deterministic guidance (Xu et al. 2019). TLEs with sufficient
lead time to be potentially useful operationally can be con-
structed using a set of sequential HRRR forecasts, with each
model run treated as an ensemble member. In this case, we
use F06–F18 forecasts from all model runs initialized from
0600 UTC 6 to 0600 UTC 9 September to calculate statistics
at valid times from 0000 UTC 7 to 1200 UTC 9 September.
Diagnostic values such as median, minimum, and maximum
forecast wind gusts provide a simple evaluation of the model’s
uncertainty as the event unfolded (Fig. 4). The unrepresenta-
tiveness of the lighter HSFO3 observations relative to that
analyzed and forecast by the HRRR is evident in Fig. 4.

c. Spatial analysis of forecast data

Many applications requiring HRRR model output need
only a fraction of the 1.9 million grid points in the HRRR
CONUS domain. Hence, users typically implement methods
to subset areas of interest from the complete grids. Accessing
one or more HRRR-Zarr chunks of size 450 km2 may help
simplify that process for many local applications while adja-
cent chunks can be stitched together to evaluate conditions
for regional scales.

Model analyses are often used as proxies for observations,
especially in areas of complex terrain where in situ measure-
ments may not be available or representative of prevailing
conditions (e.g., Fig. 5). As a further example, we use the
HRRR-Zarr analysis stores to determine the onset time of
wind gusts exceeding 10 m s21 for every point within the west-
ern Oregon chunk encompassing the large fires under way on
7–8 September 2020 (Fig. 6). This wind gust threshold was
chosen on the basis of criteria commonly used for red flag
warnings issued by the National Weather Service. The filled

contours in Fig. 6 depict the approximate onset time of the
downslope windstorm event across western Oregon, with
the event beginning along the highest reaches of the Cascade
Range and then progressing westward later. Such diagnostics
can then be related to available wind observations and dam-
age reports to help evaluate the ability of the HRRR model
to forecast the temporal evolution of the event.

FIG. 4. Wind gusts (m s21) from HSFO3 (blue dots) and HRRR
wind gust forecasts near HSFO3, colored corresponding to initiali-
zation time.

FIG. 5. Wind gusts (m s21) from HSFO3 (blue dots), HRRR
analyses (red line), and median of F06–F18 forecasts (dashed black
line) near HFSO3 for valid times from 0000 UTC 7 to 1200 UTC 9
Sep. The shading indicates the range between the maximum and
minimum wind gusts from the F06–F18 time-lagged ensemble.

FIG. 6. Time of first HRRR analysis (F00) with a wind gust
exceeding 10 m s21 (shaded according to the scale) at each grid
point for model runs initialized between 1200 UTC 7 and 0300
UTC 9 Sep.
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Building on the TLE concept available from consecutive
HRRR forecasts, we calculate the probability of a HRRR
wind gust forecast exceeding 10 m s21 at a given time during
the downslope windstorm for all grid points within the west-
ern Oregon chunk. The 21 model runs (F01–F18, F24, F30,
and F36) available from forecasts valid at 0000 and 0600 UTC
8 September 2020 are used to calculate the fraction of wind
gusts forecasts exceeding that threshold in this subregion
(Fig. 7). Using such probabilistic guidance as the event devel-
oped, forecasters might have higher confidence that the
HRRR model forecasts issued earlier are being confirmed by
more recent forecasts as the downslope winds continued. For
a single valid time, this metric utilized wind gust values within
20 HRRR-Zarr stores, which required less than 20 MB of
storage capacity, an amount easily manageable in computer
memory. Actual forecast applications might limit the TLE
members to those available at least 12 h in advance, for exam-
ple, forecasts with lead times from F12 to F18 and those avail-
able every 6 h out to 48 h from the HRRRv4 model output
now available.

d. Empirical cumulative distributions

Empirical cumulative distributions of model data and
observations are often utilized to better understand the range
of possible values for a given parameter as a function of time
and/or location and can be used to correct for model biases
(Blaylock et al. 2018; Gowan and Horel 2020). If enough data
are available over an adequate period, these cumulative distri-
butions can be thought of as a climatology and used for com-
parison with a parameter at an equivalent time or location to

recognize conditions that are likely anomalous. Creating dis-
tributions from observations or model output typically
requires data from thousands of input times and files for the
information to be considered useful. This can be a daunting
and time-consuming task since a large amount of storage and
compute power are needed to efficiently process thousands of
GRIB2 data files.

To illustrate accessing large amounts of data from the
HRRR-Zarr store, we generated empirical cumulative distri-
butions for selected atmospheric parameters using a single
high-performance compute node. This use case motivated the
later analysis in section 2d to evaluate the additional speedup
that might result using an AWS dask cluster. To assess the
anomalous nature of the downslope wind event during
September 2020 in northern Oregon, we generated cumula-
tive distributions of wind gust data for each grid point in that
region by accessing all HRRR hourly analyses during the
month of September during the preceding years 2016–19.
Each grid point’s cumulative distribution is derived then from
2880 wind gust values, one from every hourly HRRR analysis
during the four calendar months. A range of percentiles can
be derived from the empirical distributions to estimate nor-
mal and above normal wind gusts in this area during the
month of September.

As expected, the highest wind gusts evident from the 95th-
percentile values during September 2016–19 tend to occur
over the Cascade Range and offshore (Fig. 8). Using this 4-yr
distribution, we then compare the 95th-percentile values with
the analysis and F06, F12, and F18 forecasts valid at 0600
UTC 8 September 2020 (Fig. 9). To emphasize the severity of

FIG. 7. Fraction of HRRR wind gust forecasts exceeding 10 m s21 at valid times (left) 0000 and (right) 0600 UTC
8 Sep 2020. Contours correspond to probability values (0–1) and are shaded according to the scale.
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the event across the region, the excess magnitude of wind
gusts values above the 95th percentile is shown. Comparing
these forecasts and analysis with the cumulative distribution
is a simple way to show how anomalous this event was,
with wind gusts exceeding the 95th-percentile values by
15–30 m s21 over the Cascade and portions of the Coast
Ranges and extending into sections of the Willamette Valley.

The empirical distributions computed using 4 months of
data for a single variable and chunk required less than a
minute on a typical workstation, reading from Zarr stores on
a local network drive. In contrast, Blaylock et al. (2018) calcu-
lated empirical cumulative distributions for all HRRR model
grid points. These distributions were then used to output wind
speed values at 19 percentiles at all HRRR grid points for
each day of the year. As previously stated, this was a rigorous
and time-intensive endeavor that required an enormous
amount of model output. Ultimately, calculating these distri-
butions resulted in the need to store 6935 additional files con-
taining the percentiles at each of the 1.9 million HRRR grid
points.

Calculating empirical cumulative distributions, as well as
other large-scale statistical metrics, as needed with data in
Zarr format gives the end user the ability to continually
update their statistics as new information is received. This
method especially benefits users who are interested in time-
sensitive datasets, like those from numerical weather predic-
tion models. Using the HRRR-Zarr method, a user will be

able to efficiently compute statistics that are tailored to a spe-
cific application or workflow, without dealing with the over-
head of many gigabytes of excess data.

4. Summary

Vast amounts of output produced by numerical weather
prediction models are accessed and processed every day for
applications ranging from operational forecasting to research
and machine learning. As advancements in technology allow
for finer time and spatial resolution model output, users may
struggle to keep up even if they are only interested in access-
ing a small fraction of the data available. Much of this model
output is currently available in GRIB2-formatted files con-
taining hundreds of two-dimensional variable fields for a sin-
gle valid time. Despite the highly compressible nature of
GRIB2, the size of each forecast hour file is often O(100)
MB, making high-volume input/output applications challeng-
ing due to the memory and compute resources needed to
parse them.

We present an approach that reorganizes HRRR analyses
(F00) from the surface and isobaric HRRR file types into tiny
two-dimensional (150, 150) files in Zarr format for each vari-
able/vertical-level combination and 96 subdomains of the
CONUS grid. HRRR forecasts from the surface files are
stored as data cubes (XX, 150, 150) where the forecast dimen-
sion XX is either 48 for initialization times of 0000, 0600, 1200,
and 1800 UTC or 18 for all other hours. We create the Zarr
stores from the HRRR GRIB2 files provided by the NOAA
BDP with support provided by the Amazon Sustainability
Data Initiative. Our supplementary S3 bucket, hrrrzarr, is pub-
licly accessible as part of the Amazon Initiative.

The structure of the HRRR-Zarr archive was designed to
allow users the flexibility to access only the data they need
through selecting subdomains and parameters of interest
without the overhead of memory and processing require-
ments that comes from accessing numerous large GRIB2 files.
Users may retrieve the analysis files needed to diagnose prior
conditions or retrieve the forecast files in combination with
the analysis files to evaluate future conditions or validate
prior forecasts.

Substantial performance improvements are illustrated using
Zarr in data-proximate parallelized cloud computing. How-
ever, it is also possible to access cloud-native repositories such
as HRRR-Zarr very efficiently from local compute resources
ranging from personal laptops to high-performance compute
nodes.

Using a high-impact weather event from September 2020,
we present workflow examples for analyzing large amounts of
sensible weather parameters from the HRRR-Zarr data
archive in a limited subdomain: assembling time series for a
specific grid point of forecast conditions over a range of model
runs, examining similarities and differences among samples of
model forecasts for the same valid times from successive
model runs, calculating empirical cumulative distributions
over multiyear periods, and detecting forecasts of extreme
conditions relative to conditions during other recent years.
The small, compressed chunks of data are ideal for

FIG. 8. The 95th-percentile wind gust values (m s21; shaded
according to the scale) calculated at each grid point from empirical
cumulative distributions derived from HRRR analyses during
September 2016–19.
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high-throughput workflows where minimizing processing time
or accessing files corresponding to many different valid times
is critical. However, relying on the GRIB2 HRRR files acces-
sible from AWS and Google remains the best option for ini-
tializing high-resolution model simulations that require many
variables at multiple levels over a limited sample of valid
times.

Our GRIB2-to-Zarr conversion of the HRRR model
archive is only one of many research endeavors that aim to
make model data more accessible to end users. Cloud reposi-
tories whether relying on GRIB2, netCDF-4, or Zarr data for-
mats are increasingly being accessed using xarray library
tools. While the Zarr Python library is relatively stable, xarray
is continuing to undergo rapid development in order to sup-
port many different formats and protocols. Greater utilization
of Zarr within the broader community will likely follow if the

Open Geospatial Consortium adopts Zarr as an official com-
munity data standard. That will likely lead to diverse efforts
to use Zarr in cloud-based data repositories as well as being
relevant to users who want the flexibility to customize a Zarr
store structure for their own purposes. Utilizing the Zarr for-
mat as an alternative file structure for the vast amount of
numerical weather prediction output may help expand its
already wide reach to data scientists in other disciplines while
optimizing workflows for end users throughout the weather
enterprise.
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